
255

The Condor 113(2):255–265
 The Cooper Ornithological Society 2011

The Condor, Vol. 113, Number 2, pages 255–265. ISSN 0010-5422, electronic ISSN 1938-5422.  2011 by The Cooper Ornithological Society. All rights reserved. Please direct 
all requests for permission to photocopy or reproduce article content through the University of California Press’s Rights and Permissions website, http://www.ucpressjournals.com/
reprintInfo.asp. DOI: 10.1525/cond.2011.090226

Resumen. El escarabajo del tamarisco (Diorhabda spp.), un agente de control biológico no nativo, ha sido in-
troducido para erradicar al tamarisco (Tamarix spp.), un género de árbol no nativo que se ha vuelto un componente 
dominante de los bosques ribereños en el sudoeste de los Estados Unidos. Los escarabajos del tamarisco tienen el 
potencial de dispersarse ampliamente y defoliar grandes extensiones del hábitat del tamarisco, pero no se cono-
cen los efectos de una pérdida tan extensa de vegetación ribereña sobre las aves. Revisamos la literatura sobre los 
efectos de otros insectos defoliantes sorbe las aves para investigar el potencial de los escarabajos del tamarisco de 
afectar positiva o negativamente a las aves mediante el cambio en la abundancia de alimentos y en la estructura 
de la vegetación. Combinamos luego los datos de los patrones temporales de defoliación del tamarisco producidos 
por los escarabajos con la productividad de los nidos de una especie ribereña obligada bien estudiada, Empidonax 
traillii extimus. Simulamos las consecuencias demográficas potenciales de la defoliación de los escarabajos sobre 
las aves ribereñas reproductivas tanto al corto como al largo plazo. Nuestros resultados destacan que los efectos 
del control biológico del tamarisco sobre las aves probablemente variarán por especie y población, dependiendo 
de su sensibilidad a la defoliación estacional dada por los escarabajos y a la pérdida neta de hábitat ribereño debida 
a la mortalidad de los tamariscos. Las especies con distribuciones restringidas que incluyen áreas dominadas por 
tamariscos pueden verse afectadas negativamente tanto al corto como al largo plazo. La tasa de regeneración y/o 
restauración de álamos (Populus spp.) y sauces (Salix spp.) con relación a la tasa de pérdida de tamariscos puede 
ser crítica para determinar el efecto de largo plazo de este experimento ecológico de gran escala.
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Control Biológico del Tamarisco por el Escarabajo del Tamarisco: Consecuencias Potenciales  
para las Aves Ribereñas en el Sudoeste de los Estados Unidos

Tamarisk Control and Riparian Birds
Eben h. Paxton et al.

Abstract. The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradi-
cate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian wood-
lands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large 
expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains un-
known. we reviewed literature on the effects of other defoliating insects on birds to investigate the potential for 
tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. we 
then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-
studied riparian obligate, the Southwestern willow Flycatcher (Empidonax traillii extimus), to simulate the po-
tential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. 
Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, de-
pending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mor-
tality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected 
both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) 
and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of 
this large-scale ecological experiment.
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INTRODUCTION

Riparian woodlands, dense stands of woody vegetation found 
along streams, lakes, and other sources of water, are impor-
tant breeding, wintering, and stopover habitat for a variety of 

birds (Rich 2002), especially in the arid southwestern United 
States (Johnson et al. 1985, knopf et al. 1988). Unfortunately, 
riparian woodlands have undergone large-scale loss or degra-
dation through conversion to agriculture, urbanization, over-
grazing, and disruption of hydrologic processes (knopf et al. 
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1988, Busch and Smith 1995). Concomitant with these losses 
has been a replacement of native riparian trees by introduced 
species, particularly the tamarisk (Tamarix spp., also known 
as saltcedar). Tamarisk is currently estimated to be the second-
most dominant species complex of woody plants in western 
riparian zones (Friedman et al. 2005), occupying over 500 000–
650 000 ha in the western U.S. (Zavaleta 2000). Tamarisk can 
form large monotypic stands along rivers, around reservoirs, 
and in other riparian areas, constituting the only riparian 
woodland in some areas (Shafroth et al. 2005).

The U.S. Department of Agriculture recently led efforts to 
release tamarisk beetles (Diorhabda spp.; Tracy and Robbins 
2009) as a biocontrol agent, leading to the potential for rapid, 
large-scale eradication of tamarisk across the southwestern 
United States (DeLoach et al. 2000). Native to Eurasia, tama-
risk beetles defoliate tamarisk trees during the growing sea-
son, with repeated defoliation over multiple years eventually  
killing the tree as it depletes its carbohydrate reserves (Fig. 1, 
Dudley et al. 2001). DeLoach et al. (2000) predicted biocon-
trol of tamarisk to have large net positive benefits and min-
imal negative effects, but the ecological consequences of 
introduced biocontrol agents are notoriously difficult to pre-
dict (Simberloff and Stiling 1996, Thomas and willis 1998, 
Louda and Stiling 2004, messing and wright 2006). Although 
the research on the tamarisk beetle’s herbivory, reproductive 
success, and host preference prior to release was extensive 
(DeLoach et al. 2000, Dudley et al. 2001, Dudley 2005), tama-
risk beetles have dispersed from sites of release in Colorado 
and Utah faster and farther than predicted (Bean et al. 2007). 
Once established in a riparian system, tamarisk beetles can 
have substantial effects on tamarisk; Dennison et al. (2009) 
documented as much as 50% of riparian woodland affected by 
defoliation in some drainages.

The effect of this large-scale biocontrol effort on riparian 
bird communities is currently unknown. Bird use of tamarisk 
is often greater than generally recognized; across the west-
ern United States, 49 species have been documented breeding 
in tamarisk, and in Arizona and New mexico 11 bird species 
of regional or national concern frequently breed in tamarisk 
(Sogge et al. 2008). however, there is little research on the 
ecological ramifications of breeding in tamarisk. A notable 
exception are studies of the productivity, survivorship, physi-
ology, and diet of the Southwestern willow Flycatcher (Em
pidonax traillii extimus; Owen et al. 2005, Sogge et al. 2006, 
Paxton et al. 2007, Durst et al. 2008a, b, Ellis et al. 2008), 
which indicate that tamarisk is ecologically equivalent to na-
tive habitat in at least some areas (Sogge et al. 2008). Like-
wise, tamarisk can provide shelter for wintering birds and 
migrants (walker 2008, van Riper et al. 2008). Cerasale and 
guglielmo (2010) found that rates of refueling of migrating 
wilson’s warblers (Wilsonia pusilla) stopping over at a site 
in Arizona were higher in tamarisk than in native vegetation 
(Cerasale and guglielmo 2010).

Studies evaluating avian use of tamarisk typically com-
pare the value of tamarisk to that of native riparian woody 
vegetation (hinojosa-huerta 2006, Sogge et al. 2008, van 
Riper et al. 2008). more relevant from the perspective of the 
effects of biocontrol is the importance of tamarisk habitat rel-
ative to what will remain after defoliation by tamarisk beetles 
and the trees’ death (Sogge et al. 2008)—conversion of de-
foliated tamarisk habitat to native riparian woodlands is not 
assured (Shafroth et al. 2008, Stromberg et al. 2009). In ri-
parian systems with unaltered hydrology, native trees may 
establish themselves quickly and outcompete tamarisk (Sher 
et al. 2000, 2002); such areas will likely transition to native 
riparian woodlands following tamarisk defoliation by bee-
tles. however, in many areas already affected by beetles, or 
likely to be so in the near future, soil chemistry and hydrology 
have been altered to the point that native trees can re-establish 
themselves only under certain conditions (Bay and Sher 2008) 
or only with carefully planned and extensive efforts at res-
toration (Shafroth et al. 2008). without effective restoration, 
former tamarisk habitat may be replaced with native or exotic 
forbs and grasses rather than the shrub and trees needed by 
most riparian birds (harms and hiebert 2006).

The release of tamarisk beetles as a biocontrol agent rep-
resents a large-scale ecological experiment with currently 
unknown but potentially widespread environmental conse-
quences. The rapid spread of the tamarisk beetle and its poten-
tial effects on riparian ecosystems has led to growing concern 
about the program (e.g., Stromberg et al. 2009, hultine et al. 
2010). On 15 June 2010 the U.S. Department of Agriculture 
issued a moratorium on interstate transportation and release 
of the tamarisk beetle in response to concerns about its poten-
tial effects on habitat critical to the Southwestern willow Fly-
catcher; however, the tamarisk beetle is firmly established in 
multiple watersheds of the southwestern United States and has 
continued to expand its range. As an initial step toward under-
standing how tamarisk defoliation may affect riparian birds, 
we reviewed literature on the effects of other insect defoliaters 
and modeled potential outcomes to develop predictions about 
the effects of biocontrol of tamarisk with beetles. we hypoth-
esized that defoliation by beetles should affect birds in three 
ways (Fig. 2): (1) altering prey availability, either by inducing 
a short-term increase in tamarisk beetles as prey or by altering 
the abundance or composition of other insect prey as a result 
of defoliation; (2) increasing nest abandonment and predation 
due to loss of foliar cover; and (3) reducing the quantity of ri-
parian habitat available to breeding birds.

EFFECTS OF INSECT IRRUPTION  
AND DEFOLIATION ON BREEDINg  
BIRD COmmUNITIES

Biocontrol of tamarisk by tamarisk beetles is characterized 
by rapid increases in beetle populations during the summer; the 
larvae defoliate the trees completely (Fig. 1). Other irruptive, 
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FIgURE 1. (A) habitat in which the Southwestern willow Flycatcher breeds at St. george, Utah, prior to tamarisk defoliation. (B) The 
same habitat during defoliation. (C) Active flycatcher nest (circle) that eventually failed in tamarisk-dominated habitat at St. george, 2008, 
during defoliation. Photos by P. wheeler, Utah Division of wildlife Resources.

defoliating insects follow a similar pattern. As a first step in 
investigating the potential effects of tamarisk beetle biocontrol 
on birds, we searched the literature in Science Citation Index 
Expanded, accessed via the web of Science (http://thomson 
reuters.com/products_services/science/science_products/a-z/ 
web_of_science), using the terms “defoliation,” “insect out-
break,” and “insect irruption” combined with the terms “bird,” 
“birds,” and “avian.” This search returned 21 articles published 

between 1987 and 2010 that were relevant to the questions we 
pose, and we obtained another nine articles from the literature 
cited within those papers. we did not include articles focused 
on woodpecker responses to insect outbreaks as tamarisk 
lacks the structural characteristics needed to support breeding 
by this group of birds (Bateman and Paxton 2010). Of the 30 
papers we reviewed, nine focused on the gypsy moth (Lyman
tria dispar; Degraaf 1987, Thurber et al. 1994, Yahner and 
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mahan 1996, Bell and whitmore 1997, 2000, gale et al. 2001, 
Showalter and whitmore 2002, Barber et al. 2008, Schill and 
Yahner 2009), nine on the spruce budworm (Choristoneura 
fumerifana; kendeigh 1947, mitchell 1952, morris et al. 1958, 
Zach and Falls 1975, morse 1978, Crawford et al. 1983, Craw-
ford and Jennings 1989, Patten and Burger 1998, holmes et al. 
2009), four on woolly adelges (Adelges piceae and A. tsugae; 
Rabenold et al. 1998, Tingley et al. 2002, Becker et al. 2008, 
Allen et al. 2009), three on the spruce beetle (Dendroctonus 
rufipennis; matsuoka et al. 2001, matsuoka and handel 2007, 
werner et al. 2006), two on the processionary moth (Thaume
topoea pityocampa; Pimental and Nilsson 2007, 2009), two on 
the tent caterpillar (Malacosoma disstria; Sealy 1979, Pelech 
and hannon 1995), and one on the elm spanworm (Ennomus 
subsignarius; haney 1999). The response of southwestern 
riparian birds to tamarisk defoliation will undoubtedly vary 
somewhat from that of birds in defoliated eastern and north-
ern forests, so our discussion emphasizes general patterns and 
important differences between the tamarisk system and sys-
tems studied elsewhere.

Of the 25 papers documenting responses of avian popula-
tions to defoliating insects, 10 reported positive responses, 13 
reported some species increasing and others decreasing, and 
two reported overall negative responses. Population increases 
were attributed to increased abundance of the defoliating in-
sect as prey or to changes in habitat caused by defoliation. 
Some defoliating insects, like the spruce budworm, are highly 
palatable and consumed by a wide variety of birds, as well as 
by a smaller suite of “budworm specialist” warblers, so birds’ 
positive response was likely due to increased abundance of 
the budworm as prey. Even in areas of outbreaks of this highly 
palatable insect, however, few birds had guts containing >40% 
budworm by volume (mitchell 1952), and a diet of budworms 
alone would likely be nutritionally deficient (morse 1978). 
Other defoliating insects were taken by a smaller suite of birds 
(e.g., the processionary moth; Pimental and Nilsson 2007, 
2009) or were palatable for only a limited period of the life 
cycle (e.g., the tent caterpillar [Sealy 1979, Pelech and han-
non 1995] and gypsy moth [Bell and whitmore 1997, gale 
et al. 2001]) or apparently did not serve as prey at all (woolly 

FIgURE 2. hypothesized model of three primary ways that biocontrol of tamarisk trees by the tamarisk beetle can affect avian popula-
tions in riparian systems. In the short term, prior to the trees’ death, tamarisk beetles could provide a food source for insectivorous birds as 
beetle populations expand. Defoliation and mortality of tamarisk, however, will eventually reduce habitat quality by reducing abundance of 
other insect prey dependent on foliage and by removing canopy cover critical for reducing exposure of nests to predators, brood parasites and 
the extreme temperatures typical of the southwestern United States. The long-term consequences of tamarisk mortality will depend on the 
rate of vegetation recovery after the tamarisk dies; these consequences may range from no net loss of habitat if native vegetation recovers at 
the same rate as tamarisk dies to net loss of habitat when tamarisk mortality is not followed by regrowth of other riparian vegetation.
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adelges; Rabenold et al. 1998, Tingley et al. 2002, Becker et 
al. 2008, Allen et al. 2009). These papers illustrate that a posi-
tive numerical response by birds to increased abundances of 
defoliating insects as prey depends on the palatability of the 
defoliating insect. Currently, nothing is known about the pal-
atability or nutritional value of tamarisk beetles for riparian 
birds. Although coleopterans constitute a significant portion 
of the diet of many southwestern riparian birds (Drost et al. 
2003, Yard et al. 2004, wiesenborn and heydon 2007, Durst 
et al. 2008a), the tamarisk beetle is a member of the family 
Chrysomelidae, which produce secondary chemicals distaste-
ful to some birds (hilker and köpf 1994, Rowell-Rahier et al. 
1995), so it may be less palatable than other coleopterans.

while tamarisk beetles may provide a temporarily abun-
dant food source, cascading effects of defoliation on the 
broader arthropod community could reduce the diversity of 
prey available to riparian insectivores. Tamarisk trees flower 
profusely and attract a variety of native insects (Durst et al. 
2008a, wiesenborn et al. 2008) as well as supporting popu-
lations of the introduced tamarisk leafhopper (Opsius stac
togalus), itself important prey for riparian birds (Yard et al. 
2004, wiesenborn 2005, Durst et al. 2008b). Thus, foliage-
feeding insects, important to gleaners, and pollinators, impor-
tant to aerial foragers, are likely to be reduced by defoliation. 
Although termites, carpenter ants, and some general wood 
borers (e.g., Buprestidae, Cerambycidae, Platypodidae, Siri-
cidae) may be attracted to beetle-killed tamarisk, we know of 
no studies that have quantified their abundance in dead tam-
arisk. Birds that would exploit an increase in these insects, 
such as woodpeckers, nuthatches, and chickadees, don’t breed 
in many of the regions likely to be affected, although they 
could prey on these insects during migration or winter. Over-
all, there is little evidence to suggest that positive responses 
by these insects necessarily follow tamarisk mortality or 
that these insects would have a significant effect on breeding 
birds. For avian insectivores that specialize on specific taxa, 
require a diverse prey base, or find chrysomelid beetles unpal-
atable, the increase in tamarisk beetles may not offset the loss 
of other important arthropods. Of the 42 species of breeding 
birds documented to use tamarisk in the southwestern United 
States, we estimate that at least 26 are likely to be affected by 
changes in arthropod abundance because of their dependence 
on insects as prey during the breeding season (Table 1).

Even if tamarisk beetles are palatable to birds, landscape-
level characteristics of southwestern riparian woodlands may 
reduce the net positive effect of the increased abundance of 
prey that has been documented in other communities. In at 
least three cases, numerical responses to defoliating insects 
were due to recruitment of birds from neighboring nondefoli-
ated habitat (morris et al. 1958, gale et al. 2001, Barber et al. 
2008). whereas these birds were colonizing defoliated patches 
from surrounding unaffected forest, the highly fragmented ri-
parian patches in the southwestern United States typically are 

surrounded by human-modified agricultural and urban lands  
or upland desert or shrub-steppe that are unsuitable for riparian- 
breeding birds. In many drainages tamarisk is the dominant 
tree, and defoliation by the beetles can be extensive and wide-
spread (Dennison et al. 2009), leaving little unaffected habitat 
to support bird populations that could invade and take advan-
tage of areas of insect outbreak. Therefore, although birds 
from adjacent nonriparian areas may benefit from dense tam-
arisk beetle populations during the breeding season, benefits 
are less certain for birds that are restricted to riparian wood-
land habitat.

Changes in woodland structure and composition after de-
foliation, which drove avian population responses to insect 
defoliation in many of the studies we reviewed, may not affect 
southwestern tamarisk habitats in the same way either. In east-
ern and northern forests, mortality of defoliated canopy trees 
typically results in more standing snags and stimulated growth 
of the shrub layer, thereby benefiting cavity nesters (Showal-
ter and whitmore 2002) and shrub- and ground-nesting birds 
(e.g., Bell and whitmore 1997, 2000) while negatively affect-
ing canopy feeders and tree nesters (Degraaf 1987, Rabenold 
et al. 1998, gale et al. 2001, Tingley et al. 2002, werner et al. 
2006). In areas with both native willows and cottonwoods and 
non-native tamarisk, defoliation may stimulate growth of na-
tive components that could offset any negative consequences 
of tamarisk defoliation. however, monotypic stands of tama-
risk typically lack a shrub layer that could respond positively to 
defoliation, and primary cavity nesters are lacking in tamarisk 
habitats. As a result, shrub and cavity nesters are unlikely to 
benefit in these tamarisk habitats, while the negative effect on 
birds dependent on the canopy would remain. Alternatively, in 
some areas where tamarisk grows with large native willows and 
cottonwoods, tamarisk acts as the shrub layer, and the loss of 
tamarisk could have negative consequences for shrub nesters.

Last, vegetation density and canopy cover may be more 
important to avian communities in southwestern riparian for-
ests than in other forest types. First, in the low-elevation des-
erts where tamarisk now dominates, foliar cover likely plays 
a more important role in ameliorating the microclimate at 
the nest (e.g., Tieleman et al. 2008). many areas reach or ex-
ceed ambient air temperatures lethal to eggs (43–44 °C; webb 
1987), and high summer daytime temperatures and aridity can 
quickly stress birds’ ability to dissipate heat and balance their 
water demands (wolf and walsberg 1996). we estimate that 
at least 19 of the bird species recorded breeding in tamarisk 
habitat could experience higher nest temperatures because of 
defoliation (Table 1) while some, like herons and egrets that 
use tamarisk primarily as a structural component to support 
nests, may be less affected. Second, several lines of evidence 
indirectly link vegetative cover and density with occurrence 
or productivity of southwestern riparian breeders. many ripar-
ian birds breed in those areas of riparian habitat where veg-
etation is densest (Fleishman et al. 2003, Sogge et al. 2005, 
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TABLE 1. Birds documented to breed in tamarisk habitat in the southwestern U.S. (from Sogge 
et al. 2008) and likely to be affected by tamarisk beetle biocontrol because of (a) alteration in insect 
prey abundance due to dependence on insects as prey during the breeding season, either positively if 
beetles serve as prey or negatively if defoliation leads to a decrease of insect abundance and diversity 
or (b) seasonal defoliation that increases nest failure due to increased predation or abandonment.

Species

Sensitivity to  
alteration of  
insect prey

Sensitivity to  
seasonal  

defoliation

gambel’s quail Callipepla gambelii
Cattle Egret Bubulcus ibis
Black-crowned Night heron Nycticorax nycticorax
white-faced Ibis Plegadis chihi
Roseate Spoonbill Platalea ajaja
Common moorhen Gallinula chloropus
mourning Dove Zenaida macroura •
white-winged Dove Zenaida asiaticaa •
Yellow-billed Cuckoo Coccyzus americanusa •
greater Roadrunner Geococcyx californianus
Elf Owl Micrathene whitneyi
Black-chinned hummingbird Archilochus alexandria •
Belted kingfisher Megaceryle alcyon
willow Flycatcher Empidonax trailliia • •
Black Phoebe Sayornis nigricans •
Bell’s Vireo Vireo belliia • •
Chihuahuan Raven Corvus cryptoleucus •
Northern Rough-winged Swallow Stelgidopteryx serripennis •
Cliff Swallow Petrochelidon pyrrhonota
Verdin Auriparus flaviceps •
Bewick’s wren Thryomanes bewickiia •
Cactus wren Campylorhynchus brunneicapillus •
American Dipper Cinclus mexicanus •
Black-tailed gnatcatcher Polioptila melanura • •
Brown Thrasher Toxostoma rufum • •
Crissal Thrasher Toxostoma crissale • •
Lucy’s warbler Oreothlypis luciaea •
Yellow warbler Dendroica petechiaa • •
Common Yellowthroat Geothlypis trichas •
Yellow-breasted Chat Icteria virensa • •
Summer Tanager Piranga rubraa • •
Abert’s Towhee Melozone aberti • •
Song Sparrow Melospiza melodia • •
Pyrrhuloxia Cardinalis sinuatus • •
Blue grosbeak Passerina caeruleaa • •
Lazuli Bunting Passerina amoena •
Indigo Bunting Passerina cyanea • •
Red-winged Blackbird Agelaius phoeniceus •
Tricolored Blackbird Agelaius tricolor •
Yellow-headed Blackbird Xanthocephalus xanthocephalus •
Brown-headed Cowbird Molothrus ater • •

aSpecies of regional or national conservation concern that breeds in tamarisk-dominated habitats 
and may experience local declines following tamarisk defoliation (see Sogge et al. 2008).

hinojosa-huerta 2006). The normalized difference vegetation 
index (NDVI), a measure of foliage density and vigor (Avery 
and Berlin 1992), is highly informative in predicting the breed-
ing habitat of the Southwestern willow Flycatcher (hatten and 
Paradzick 2003, hatten et al. 2010). Annual variation in the 
NDVI of breeding sites is strongly correlated with variation in 

the flycatcher’s annual productivity (Paxton et al. 2007). Even 
relatively small decreases in foliar cover may render a site 
unsuitable for the Southwestern willow Flycatcher (Allison  
et al. 2003). Dennison et al. (2009) have documented decreases 
in the NDVI of extensive stretches of riparian woodland occu-
pied by beetles in Colorado, indicating decreases in vegetation 
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density and vigor due to tamarisk beetle defoliation. If other 
riparian birds are affected by loss of foliar cover in the same way 
as the flycatcher, tamarisk defoliation will likely have wide-
spread effects on local and regional bird communities.

Of the studies we reviewed that examined nesting suc-
cess during or after defoliation, most found no increase in 
nest predation, parasitism, or abandonment (Degraaf 1987, 
Bell and whitmore 2000, matsuoka and handel 2007, Allen 
et al. 2009, Schill and Yahner 2009). In contrast, Thurber et 
al. (1994) and Yahner and mahan (1996) reported that artifi-
cial nests placed in defoliated areas were depredated at rates 
higher than nests placed in nondefoliated areas, although 
Thurber et al. (1994) found no association between canopy 
cover and nest success, suggesting that defoliation influenced 
predation indirectly, perhaps by altering predator abundance. 
holmes et al. (2009), following the trajectory of defoliation 
over 33 years, found an increase in bird numbers during ini-
tial phases of an outbreak was followed by a decline even be-
fore insect populations reached their peak, suggesting that 
negative effects on habitat were offsetting the initial benefit 
of increased prey availability.

SEASONAL DEFOLIATION: AN ECOLOgICAL 
TRAP FOR RIPARIAN BREEDERS?

Tamarisk beetles typically defoliate a tamarisk over several 
annual cycles before the tree dies (Dudley 2005). given that 
defoliation typically occurs in early summer, after many ri-
parian birds have begun but not yet finished nesting, the multi-
year cycles of defoliation and refoliation have the potential to 
create an “equal preference” ecological trap (Robertson and 

hutto 2006). Such traps arise when an animal attempts to breed 
in a site that it perceives as suitable but in which reproductive 
success is poor. Under such a scenario, breeding birds could be 
caught in a negative feedback loop by repeatedly returning in 
spring to breed in tamarisk-dominated areas, finding trees re-
foliated and habitat apparently suitable, only to experience de-
foliation later in the summer. This trap is especially likely for 
species whose year-to-year fidelity to a breeding site is high.

The timing of defoliation relative to the timing of breed-
ing will largely determine how the reproductive success of 
each bird species will be affected by seasonal tamarisk defoli-
ation. To better understand this dynamic for a well-studied ri-
parian nester, we combined data on tamarisk defoliation near 
Dolores, Colorado (Bureau of Reclamation, unpubl. data), 
with nest-productivity data (average number of young fledged 
per day of year) from a long-term study of the Southwestern 
willow Flycatcher in central Arizona (Ellis et al. 2008; Fig. 3). 
Because information on nesting success and timing of tama-
risk defoliation does not exist for any one site, we combined 
information from two sites for the sake of illustration. At Do-
lores, defoliation by beetles spans the period responsible for 
80% of the Southwestern willow Flycatcher’s annual produc-
tivity. If we assume that the flycatcher’s nest success is at its  
typical level prior to full defoliation but that no nests are suc-
cessful after full defoliation, beetle herbivory would reduce 
its annual population productivity by at least 40% (Fig. 3). 
If nest success declines during the period of defoliation, not 
simply after its peak, productivity could be reduced as much 
as 80%. Although timing of defoliation and nesting will vary 
by site and species, and so the degree to which defoliation  
affects a species’ reproductive success will vary, this simulation  

FIgURE 3. Percentage of cumulative nest productivity (average number of young fledged per day; y axis) by day of year (x axis) of South-
western willow Flycatchers nesting at Roosevelt Lake, Arizona, 1996–2004. Near Dolores, Colorado, defoliation by tamarisk beetles begins 
on day 173 (~22 June) and is complete by day 190 (~8 July). If the flycatcher were to nest near Dolores on the same schedule as at Roosevelt 
Lake, over 80% of its nest productivity would occur after defoliation begins.
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underscores the potential for defoliation to significantly reduce 
productivity of birds nesting in tamarisk stands being defo-
liated by beetles. Reduction in reproductive success is likely 
greatest for birds, such as many migratory species, that initi-
ate nests later in the season, before defoliation. Open-cup nest-
ers are also vulnerable because defoliated tamarisks offer less 
protection from higher temperatures. For riparian bird species 
with small populations, repeated cycles of defoliation after nest 
initiation followed by regrowth the next spring could lead to 
local extirpation. Any negative effects of an ecological trap 
would end when death of tamarisks makes the site no longer at-
tractive to breeding birds; subsequent long-term consequences 
of the introduction of tamarisk beetles would depend on the 
rate of the habitat’s recovery after the tamarisks are dead.

LONg-TERm CONSEqUENCES OF  
wIDESPREAD TAmARISk LOSS DUE  
TO BIOCONTROL BY BEETLES

Under favorable ecological conditions, restoration of native 
cottonwoods and willows to the size and structure required 
by riparian woodland birds can proceed relatively quickly (3– 
6 years; e.g., kus 1998, Taylor and mcDaniel 1998, Rood et al. 
2003). however, abiotic and biotic conditions in many areas 
now occupied by tamarisk have been so altered anthropogeni-
cally that recolonization by native willows and cottonwoods is 
unlikely without intensive restoration efforts (harms and hie-
bert 2006, Shafroth et al. 2008). given the cost and effort re-
quired for active restoration over the large areas likely to be 
affected by the tamarisk beetle, widespread tamarisk mortality 
will likely result in a net loss in riparian habitat for at least a de-
cade or more. In some areas, such as the Colorado River in the 
grand Canyon (holmes et al. 2005, Sogge et al. 2005) and the 
Pecos River in New mexico (hunter et al. 1988), where ripar-
ian birds’ abundance and distribution expanded when tamarisk 
created new riparian woodlands where none existed in recent 
times, loss of tamarisk will likely result in the loss of at least 
some species from the riparian breeding bird community (e.g., 
Brown 1992). Large-scale aerial spraying of tamarisk along 
the Pecos River in New mexico resulted in the loss of tens of 
kilometers of riparian forest and the subsequent extirpation 
of breeding Yellow-billed Cuckoos (Coccyzus americanus) 
from the treated areas (Livingston and Schemnitz 1996, Tra-
vis 2005), a possible analog of the effects of biocontrol. Criti-
cal habitat for the endangered Southwestern willow Flycatcher 
includes stretches of tamarisk-dominated riparian woodland 
(USFwS 2005), with approximately 28% of known territories 
rangewide found in such habitat (Durst et al. 2007), so a rapid 
loss of tamarisk across the Southwestern willow Flycatcher’s 
range could slow or jeopardize its recovery. Another consider-
ation is the ability of locally or regionally rare species to recol-
onize habitat regenerated at a treated site. An important factor 
in the Southwestern willow Flycatcher’s colonization of new 
sites is distance from source populations (winkler et al. 2004). 

Colonization of new sites is high up to 30 km from a source 
population then decreases with distance (Paxton et al. 2007). 
Thus, predicting how biocontrol with beetles will affect popu-
lations of riparian birds over the long term will require knowl-
edge of the spatial extent of affected areas, the probability and 
length of habitat recovery, and the rate at which avian popula-
tions will recolonize recovered habitat.

mANAgEmENT ImPLICATIONS AND  
SUggESTIONS FOR FUTURE RESEARCh

Tamarisk has been viewed almost exclusively as a management 
problem and has been the subject of extensive efforts at control 
and eradication. Perceptions of its ecological role, however, are 
changing, and the challenges of control and restoration of native 
riparian habitat are now better understood (Shafroth et al. 2008, 
Stromberg et al. 2009, hultine et al. 2010). Our review high-
lights that birds’ response to biocontrol of tamarisk is likely to 
be complex, with different species responding differently ac-
cording to (1) their ability to exploit tamarisk beetles as prey,  
(2) their sensitivity to the seasonality of defoliation, and (3) their 
dependence on current tamarisk stands as productive habitat 
(Table 1). Although the majority of species documented to use 
tamarisk likely have populations large enough or are wide-
spread enough in other habitats to withstand large-scale loss of 
tamarisk, species that use tamarisk extensively and with distri-
butions confined to areas dominated by tamarisk may experi-
ence significant population declines, locally or regionally.

given the potentially rapid and widespread loss of tama-
risk due to biocontrol by the beetle, and the uncertainty of how 
such loss may affect riparian bird populations, proactive ac-
tions to minimize negative consequences are prudent. Those 
actions could include (1) giving priority to sustaining and pro-
tecting existing stands of native-dominated riparian vegeta-
tion that may act as important refugia in areas currently or 
likely to be affected by the beetle, including ensuring supplies 
of water adequate to maintain these woodlands as well as pro-
tection from any further loss or degradation, (2) actively re-
storing native willows, cottonwoods, and other native riparian 
vegetation in areas now dominated by tamarisk and known to 
harbor breeding populations of sensitive riparian birds, and 
(3) long-term planning with the goal of balancing the spatial 
and temporal loss of tamarisk habitat with restoration, par-
ticularly with restored sites near enough (e.g., within 30 km) 
to allow successful colonization through dispersal as tamarisk 
succumbs to defoliation.

we suggest several aspects of the tamarisk beetle–bird 
interaction that warrant future research: (1) the potential for 
tamarisk beetles to act as food for riparian birds, (2) the ef-
fects of loss of foliar cover on other native and non-native in-
sect prey, (3) the effect of loss of foliar cover on nest success 
and annual productivity, and (4) the rate at which native veg-
etation recovers after tamarisk beetle attack in areas of mixed 
vegetation versus that in monotypic stands of tamarisk.
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